45 research outputs found

    Timesheets.js: When SMIL Meets HTML5 and CSS3

    Get PDF
    International audienceIn this paper, we explore different ways to publish multimedia documents on the web. We propose a solution that takes advantage of the new multimedia features of web standards, namely HTML5 and CSS3. To avoid the usual development of complex scripts for handling timing, synchronization and user interaction, we propose to complement HTML5 and CSS3 with SMIL Timesheets. This is made possible by a Timesheets scheduler that runs in the browser. Various applications based on this solution illustrate the paper, ranging from media annotations to web documentaries

    Optimization of the Nested Monte-Carlo Algorithm on the Traveling Salesman Problem with Time Windows

    Get PDF
    International audienceThe traveling salesman problem with time windows is known to be a really difficult benchmark for optimization algorithms. In this paper, we are interested in the minimization of the travel cost. To solve this problem, we propose to use the nested Monte-Carlo algorithm combined with a Self-Adaptation Evolution Strategy. We compare the efficiency of several fitness functions. We show that with our technique we can reach the state of the art solutions for a lot of problems in a short period of time

    Learning opening books in partially observable games: using random seeds in Phantom Go

    Get PDF
    International audienceMany artificial intelligences (AIs) are randomized. One can be lucky or unlucky with the random seed; we quantify this effect and show that, maybe contrarily to intuition, this is far from being negligible. Then, we apply two different existing algorithms for selecting good seeds and good probability distributions over seeds. This mainly leads to learning an opening book. We apply this to Phantom Go, which, as all phantom games, is hard for opening book learning. We improve the winning rate from 50% to 70% in 5x5 against the same AI, and from approximately 0% to 40% in 5x5, 7x7 and 9x9 against a stronger (learning) opponent

    Multifaceted Role of Heme during Severe Plasmodium falciparum Infections in India

    Get PDF
    Several immunomodulatory factors are involved in malaria pathogenesis. Among them, heme has been shown to play a role in the pathophysiology of severe malaria in rodents, but its role in human severe malaria remains unclear. Circulating levels of total heme and its main scavenger, hemopexin, along with cytokine/chemokine levels and biological parameters, including hemoglobin and creatinine levels, as well as transaminase activities, were measured in the plasma of 237 Plasmodium falciparum-infected patients living in the state of Odisha, India, where malaria is endemic. All patients were categorized into well-defined groups of mild malaria, cerebral malaria (CM), or severe noncerebral malaria, which included acute renal failure (ARF) and hepatopathy. Our results show a significant increase in total plasma heme levels with malaria severity, especially for CM and malarial ARF. Spearman rank correlation and canonical correlation analyses have shown a correlation between total heme, hemopexin, interleukin-10, tumor necrosis factor alpha, gamma interferon-induced protein 10 (IP-10), and monocyte chemotactic protein 1 (MCP-1) levels. In addition, canonical correlations revealed that heme, along with IP-10, was associated with the CM pathophysiology, whereas both IP-10 and MCP-1 together with heme discriminated ARF. Altogether, our data indicate that heme, in association with cytokines and chemokines, is involved in the pathophysiology of both CM and ARF but through different mechanisms.Indo-French Centre for the Promotion of Advanced Research, Associated International Laboratory Systems (LIA; CNRS), Immunology and Genetics of Infectious Diseases (SIGID), Department of Biotechnology from the Ministry of Science and Technology of India (DBT), Tata Institute of Fundamental Research (TIFR) (intramural funds), Université Lille (doctoral contract), IFCPAR (Raman-Charpak award), College Doctoral Lille Nord de France (AAP n10 award), Fondation des Treille, Conseil Régional du Nord-Pas de Calais

    Coastal sea level anomalies and associated trends from Jason satellite altimetry over 2002–2018

    Get PDF
    Climate-related sea level changes in the world coastal zones result from the superposition of the global mean rise due to ocean warming and land ice melt, regional changes caused by non-uniform ocean thermal expansion and salinity changes, and by the solid Earth response to current water mass redistribution and associated gravity change, plus small-scale coastal processes (e.g., shelf currents, wind & waves changes, fresh water input from rivers, etc.). So far, satellite altimetry has provided global gridded sea level time series up to 10–15 km to the coast only, preventing estimation of sea level changes very close to the coast. Here we present a 16-year-long (June 2002 to May 2018), high-resolution (20-Hz), along-track sea level dataset at monthly interval, together with associated sea level trends, at 429 coastal sites in six regions (Northeast Atlantic, Mediterranean Sea, Western Africa, North Indian Ocean, Southeast Asia and Australia). This new coastal sea level product is based on complete reprocessing of raw radar altimetry waveforms from the Jason-1, Jason-2 and Jason-3 missions

    Sea level along the world’s coastlines can be measured by a network of virtual altimetry stations

    Get PDF
    For nearly 30 years, space-based radar altimetry has been routinely measuring changes in sea level at global and regional scales. But this technique designed for the open ocean does not provide reliable sea level data within 20 km to the coast, mostly due to land contamination within the radar echo in the vicinity of the coast. This problem can now be overcome through dedicated reprocessing, allowing the retrieval of valid sea level data in the 0-20 km band from the coast, and then the access to novel information on sea level change in the world coastal zones. Here we present sea level anomalies and associated coastal sea level trends at 756 altimetry-based virtual coastal stations located along the coasts of North and South America, Northeast Atlantic, Mediterranean Sea, Africa, North Indian Ocean, Asia and Australia. This new dataset, derived from the reprocessing of high-resolution (300 m) along-track altimetry data from the Jason-1, 2 and 3 missions from January 2002 to December 2019, allows the analysis of the decadal evolution of coastal sea level and fills the coastal gap where sparse sea level information is currently available

    Challenges and perspectives for naming lipids in the context of lipidomics

    Get PDF
    Introduction: Lipids are key compounds in the study of metabolism and are increasingly studied in biology projects. It is a very broad family that encompasses many compounds, and the name of the same compound may vary depending on the community where they are studied. Objectives: In addition, their structures are varied and complex, which complicates their analysis. Indeed, the structural resolution does not always allow a complete level of annotation so the actual compound analysed will vary from study to study and should be clearly stated. For all these reasons the identification and naming of lipids is complicated and very variable from one study to another, it needs to be harmonized. Methods & Results: In this position paper we will present and discuss the different way to name lipids (with chemoinformatic and semantic identifiers) and their importance to share lipidomic results. Conclusion: Homogenising this identification and adopting the same rules is essential to be able to share data within the community and to map data on functional networks

    Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level

    Get PDF
    A major challenge for managing impacts and implementing effective mitigation measures and adaptation strategies for coastal zones affected by future sea level (SL) rise is our limited capacity to predict SL change at the coast on relevant spatial and temporal scales. Predicting coastal SL requires the ability to monitor and simulate a multitude of physical processes affecting SL, from local effects of wind waves and river runoff to remote influences of the large-scale ocean circulation on the coast. Here we assess our current understanding of the causes of coastal SL variability on monthly to multi-decadal timescales, including geodetic, oceanographic and atmospheric aspects of the problem, and review available observing systems informing on coastal SL. We also review the ability of existing models and data assimilation systems to estimate coastal SL variations and of atmosphere-ocean global coupled models and related regional downscaling efforts to project future SL changes. We discuss (1) observational gaps and uncertainties, and priorities for the development of an optimal and integrated coastal SL observing system, (2) strategies for advancing model capabilities in forecasting short-term processes and projecting long-term changes affecting coastal SL, and (3) possible future developments of sea level services enabling better connection of scientists and user communities and facilitating assessment and decision making for adaptation to future coastal SL change.RP was funded by NASA grant NNH16CT00C. CD was supported by the Australian Research Council (FT130101532 and DP 160103130), the Scientific Committee on Oceanic Research (SCOR) Working Group 148, funded by national SCOR committees and a grant to SCOR from the U.S. National Science Foundation (Grant OCE-1546580), and the Intergovernmental Oceanographic Commission of UNESCO/International Oceanographic Data and Information Exchange (IOC/IODE) IQuOD Steering Group. SJ was supported by the Natural Environmental Research Council under Grant Agreement No. NE/P01517/1 and by the EPSRC NEWTON Fund Sustainable Deltas Programme, Grant Number EP/R024537/1. RvdW received funding from NWO, Grant 866.13.001. WH was supported by NASA (NNX17AI63G and NNX17AH25G). CL was supported by NASA Grant NNH16CT01C. This work is a contribution to the PIRATE project funded by CNES (to TP). PT was supported by the NOAA Research Global Ocean Monitoring and Observing Program through its sponsorship of UHSLC (NA16NMF4320058). JS was supported by EU contract 730030 (call H2020-EO-2016, “CEASELESS”). JW was supported by EU Horizon 2020 Grant 633211, Atlantos
    corecore